论文标题
本身:迭代显着性估计灵活框架
ITSELF: Iterative Saliency Estimation fLexible Framework
论文作者
论文摘要
显着对象检测估计图像中最突出的对象。可用的无监督显着性估计器依赖于人类如何看待显着性来创建歧视特征的一组假设。通过将预先选择的假设固定为模型的组成部分,这些方法无法轻松扩展到特定的设置和不同的图像域。然后,我们提出了一个基于超级像素的迭代显着性估计灵活框架(本身),该框架允许在需要时将任何用户定义的假设添加到模型中。多亏了Superpixel分割算法的最新进展,因此显着图可用于改善超像素描述。通过将基于显着性的超像素算法与基于超像素的显着性估计器相结合,我们提出了一种新颖的显着性/超像素自我改善环,以迭代增强显着性图。我们将自己与五个指标和六个数据集的两个最先进的显着性估计器进行了比较,其中四个由自然图像和两个生物医学图像组成。实验表明,我们的方法比比较方法更强大,在自然图像数据集上呈现竞争结果,并在生物医学图像数据集上表现优于它们。
Saliency object detection estimates the objects that most stand out in an image. The available unsupervised saliency estimators rely on a pre-determined set of assumptions of how humans perceive saliency to create discriminating features. By fixing the pre-selected assumptions as an integral part of their models, these methods cannot be easily extended for specific settings and different image domains. We then propose a superpixel-based ITerative Saliency Estimation fLexible Framework (ITSELF) that allows any user-defined assumptions to be added to the model when required. Thanks to recent advancements in superpixel segmentation algorithms, saliency-maps can be used to improve superpixel delineation. By combining a saliency-based superpixel algorithm to a superpixel-based saliency estimator, we propose a novel saliency/superpixel self-improving loop to iteratively enhance saliency maps. We compare ITSELF to two state-of-the-art saliency estimators on five metrics and six datasets, four of which are composed of natural-images, and two of biomedical-images. Experiments show that our approach is more robust than the compared methods, presenting competitive results on natural-image datasets and outperforming them on biomedical-image datasets.