论文标题
Majorana旋转液体中的紧急时刻和随机单线物理
Emergent moments and random singlet physics in a Majorana spin liquid
论文作者
论文摘要
我们展示了SU(2)对称Majorana自旋液相的完全可解决的示例,其中淬火疾病导致随机的现象学。更准确地说,我们认为,一个强大的固定点控制着精确解决的$ s = 1/2 $的低温易感性$χ(t)$,带有鸡蛋B型和/或空位的装饰蜂窝晶格和空位,导致$χ(t)= {\ Mathcal c}/t+ t+ ther $α(t)\ rightarrow 0 $ as $ t \ rightarrow 0 $。第一项是一个库丽尾巴,代表了空位诱导的自旋纹理分布在许多单位细胞上的紧急响应:它是位置稀释系统的固有特征,而不是由孤立的自由旋转产生的无关效应。第二项是空缺和债券障碍(在两种情况下具有不同的$α(t)$)共有的,这是随机抗铁磁性旋转链中熟悉的随机单重阶段的响应,以及磷氧化硅(SI:p)中的随机抗铁磁相和类似的态度。
We exhibit an exactly solvable example of a SU(2) symmetric Majorana spin liquid phase, in which quenched disorder leads to random-singlet phenomenology. More precisely, we argue that a strong-disorder fixed point controls the low temperature susceptibility $χ(T)$ of an exactly solvable $S=1/2$ model on the decorated honeycomb lattice with quenched bond disorder and/or vacancies, leading to $χ(T) = {\mathcal C}/T+ {\mathcal D} T^{α(T) - 1}$ where $α(T) \rightarrow 0$ as $T \rightarrow 0$. The first term is a Curie tail that represents the emergent response of vacancy-induced spin textures spread over many unit cells: it is an intrinsic feature of the site-diluted system, rather than an extraneous effect arising from isolated free spins. The second term, common to both vacancy and bond disorder (with different $α(T)$ in the two cases) is the response of a random singlet phase, familiar from random antiferromagnetic spin chains and the analogous regime in phosphorus-doped silicon (Si:P).