论文标题
分类等级$ r $ $ \ MATHCAL {n} = 2 $ SCFTS第二部分:库仑分支的特殊Kahler分层
Towards a classification of rank $r$ $\mathcal{N}=2$ SCFTs Part II: special Kahler stratification of the Coulomb branch
论文作者
论文摘要
我们研究了四维$ \ Mathcal {n} = 2 $库仑分支的奇异基因座的分层。我们在此分层上介绍了一组自一致的条件,可用于将比例不变等级的分类扩展到1库仑分支几何形状到两个复杂维度及以后。此处提出的参数的计算简单性源于这样一个事实,即所需的主要成分 - 等级1变形模式和等级2层的包含模式 - 是离散的拓扑数据,通过与SCFT的中心电荷的关系来满足强大的自我矛盾条件。此处使用了分层数据与中心电荷的这种关系,但由一位作者在同伴论文中得出和解释。我们通过重新分析了许多以前的等级2 SCFT的例子,并通过查找新理论的示例来说明这些条件的使用。这些条件的力量源于以下事实:对于库仑分支分层,已知构想的物理允许的“基本切片”列表。相比之下,限制与希格斯分支分层相关的象征性奇异性的可能基本切片仍然是一个开放的问题。
We study the stratification of the singular locus of four dimensional $\mathcal{N}=2$ Coulomb branches. We present a set of self-consistency conditions on this stratification which can be used to extend the classification of scale-invariant rank 1 Coulomb branch geometries to two complex dimensions, and beyond. The calculational simplicity of the arguments presented here stems from the fact that the main ingredients needed -- the rank 1 deformation patterns and the pattern of inclusions of rank 2 strata -- are discrete topological data which satisfy strong self-consistency conditions through their relationship to the central charges of the SCFT. This relationship of the stratification data to the central charges is used here, but is derived and explained in a companion paper by one of the authors. We illustrate the use of these conditions by re-analyzing many previously-known examples of rank 2 SCFTs, and also by finding examples of new theories. The power of these conditions stems from the fact that for Coulomb branch stratifications a conjecturally complete list of physically allowed "elementary slices" is known. By contrast, constraining the possible elementary slices of symplectic singularities relevant for Higgs branch stratifications remains an open problem.