论文标题

宇宙学模拟中精细的星系恒星形态与恒星形成活动之间的关系:深度学习观点

The relationship between fine galaxy stellar morphology and star formation activity in cosmological simulations: a deep learning view

论文作者

Zanisi, Lorenzo, Huertas-Company, Marc, Lanusse, Francois, Bottrell, Connor, Pillepich, Annalisa, Nelson, Dylan, Rodriguez-Gomez, Vicente, Shankar, Francesco, Hernquist, Lars, Dekel, Avishai, Margalef-Bentabol, Berta, Vogelsberger, Mark, Primack, Joel

论文摘要

银河形成和进化的流体动力学模拟尝试完全模拟了塑造星系的物理学。模拟和真实星系的形态与形态类型在星系缩放关系之间分布的方式之间的一致性是我们对星系形成物理学知识的重要探针。在这里,我们提出了一种无监督的深度学习方法,以对来自Illustris和Illustristng(TNG100和TNG50)模拟的星系的精细形态结构进行严格的测试,以应对Sloan Digital Sky调查的子样本进行观察。我们的框架基于PixelCNN,这是一种具有明显可能性的图像生成的自回归模型。我们采用了一种将两个PixelCNN网络的输出结合在一起的策略,该指标隔离了天空背景的星系的精细形态学细节。我们能够\ emph {定量}确定Illustristng的改进,尤其是在高分辨率TNG50运行中,超过了原始Illustris。但是,我们发现观察到的星系和模拟星系之间星系结构的细节仍然不同。这种差异是由小的,更球体和淬火星系驱动的,这些星系在全球范围内都不太准确,无论分辨率如何,并且在探索的三个模拟之间几乎没有改善。我们推测,这种分歧对于淬灭的散光星系不那么严重,可能源于仍然太粗糙的数值分辨率,该分辨率努力努力正确捕获猝灭球形星系的内部密集区域。

Hydrodynamical simulations of galaxy formation and evolution attempt to fully model the physics that shapes galaxies. The agreement between the morphology of simulated and real galaxies, and the way the morphological types are distributed across galaxy scaling relations are important probes of our knowledge of galaxy formation physics. Here we propose an unsupervised deep learning approach to perform a stringent test of the fine morphological structure of galaxies coming from the Illustris and IllustrisTNG (TNG100 and TNG50) simulations against observations from a subsample of the Sloan Digital Sky Survey. Our framework is based on PixelCNN, an autoregressive model for image generation with an explicit likelihood. We adopt a strategy that combines the output of two PixelCNN networks in a metric that isolates the fine morphological details of galaxies from the sky background. We are able to \emph{quantitatively} identify the improvements of IllustrisTNG, particularly in the high-resolution TNG50 run, over the original Illustris. However, we find that the fine details of galaxy structure are still different between observed and simulated galaxies. This difference is driven by small, more spheroidal, and quenched galaxies which are globally less accurate regardless of resolution and which have experienced little improvement between the three simulations explored. We speculate that this disagreement, that is less severe for quenched disky galaxies, may stem from a still too coarse numerical resolution, which struggles to properly capture the inner, dense regions of quenched spheroidal galaxies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源