论文标题

带有可能环境圆锥形奇点的Riemann表面上的曲线缩短流动

Curve shortening flow on Riemann surfaces with possible ambient conic singularities

论文作者

Ma, Biao

论文摘要

在本文中,我们研究了Riemann表面上的曲线缩短流(CSF)。我们将Huisken的比较功能推广到带有圆锥奇异性的Riemann表面和表面。我们在表面上谴责了gage-hamilton-grayson定理。我们还证明,对于嵌入式简单的封闭曲线,CSF无法触摸带锥角$ \leqπ$的圆锥奇点。

In this paper, we study the curve shortening flow (CSF) on Riemann surfaces. We generalize Huisken's comparison function to Riemann surfaces and surfaces with conic singularities. We reprove the Gage-Hamilton-Grayson theorem on surfaces. We also prove that for embedded simple closed curves, CSF can not touch conic singularities with cone angles $\leq π$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源