论文标题

组合共轭的动态方法

The dynamical approach to the conjugacy in groups

论文作者

Protasov, Igor, Protasova, Ksenia

论文摘要

给定一个离散的组$ g $,我们可以通过$ g $上的所有Ultrafters组合$ g^\ ast =βg\ setminus g $,并将所有超级滤器组合在一起。 conjugations $(g,x)\ mapsto g^{ - 1} xg $在$ g $上的操作$ g $诱导了$ g $的动作,$ g^\ ast $ by $ g^\ ast $ by $(g,p)\ mapsto p^g $,$ p^g $,$ p^g = = \ = \ = \ {g^{g^{g^{ - 1} pg { - 1} pg:pg \ p \^$} $。我们研究$ g $的代数属性与$(g,g^\ ast)$的动态属性之间的相互作用。特别是,我们表明$ p^g $对于g^\ ast $中的每个$ p \ in g^\ ast $中的每个$ p^g $,并且仅当$ g $的可容纳$ g $是有限的。

Given a discrete group $G$, we identify the Stone-$\check C$ech compactification $βG$ with the set of all ultrafilters on $G$ and put $G^\ast =βG\setminus G$. The action $G$ on $G$ by the conjugations $(g,x)\mapsto g^{-1}xg$ induces the action of $G$ on $G^\ast$ by $(g, p)\mapsto p^g $, $p^g = \{ g^{-1} Pg: P\in p\}$. We study interplays between the algebraic properties of $G$ and the dynamical properties of $(G, G^\ast)$. In particular, we show that $p^G$ is finite for each $p\in G^\ast$ if and only if the commutant of $G$ is finite.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源