论文标题
Zrs本机氧化的生长动力学和原子机制
Growth kinetics and atomistic mechanisms of native oxidation of ZrS$_x$Se$_{2-x}$ and MoS$_2$ crystals
论文作者
论文摘要
对天然氧化物的透彻理解对于设计半导体设备至关重要。在这里,我们报告了Zrs $ _X $ SE $ _ {2-X} $ Alloys和MOS $ _2 $的散装单晶自发氧化的速率和机制的研究。 Zrs $ _x $ SE $ _ {2-X} $合金迅速氧化,氧化速率随SE含量而增加。基础表面的氧化是通过有利的O $ _2 $吸附来引发的,并通过ZR-O键转换的机制进行收益,从而崩溃了,从而崩溃了,并通过chalcogen的渐进式氧化还原过渡来促进。限制速率的过程是So $ _2 $的形成和外扩散。相比之下,由于不利的氧气吸附,MOS $ _2 $基底表面是稳定的。我们的结果提供了基于ZRS $ _X $ SE $ _ {2-X} $和MOS $ _2 $设计和处理半导体设备的洞察力和定量指南,并确定具有竞争性竞争性元素的分层材料中的键合和相位转换的原子规模机制。
A thorough understanding of native oxides is essential for designing semiconductor devices. Here we report a study of the rate and mechanisms of spontaneous oxidation of bulk single crystals of ZrS$_x$Se$_{2-x}$ alloys and MoS$_2$. ZrS$_x$Se$_{2-x}$ alloys oxidize rapidly, and the oxidation rate increases with Se content. Oxidation of basal surfaces is initiated by favorable O$_2$ adsorption and proceeds by a mechanism of Zr-O bond switching, that collapses the van der Waals gaps, and is facilitated by progressive redox transitions of the chalcogen. The rate-limiting process is the formation and out-diffusion of SO$_2$. In contrast, MoS$_2$ basal surfaces are stable due to unfavorable oxygen adsorption. Our results provide insight and quantitative guidance for designing and processing semiconductor devices based on ZrS$_x$Se$_{2-x}$ and MoS$_2$, and identify the atomistic-scale mechanisms of bonding and phase transformations in layered materials with competing anions.