论文标题

在声音事件识别中改善概括的顺序自我教学方法

A Sequential Self Teaching Approach for Improving Generalization in Sound Event Recognition

论文作者

Kumar, Anurag, Ithapu, Vamsi Krishna

论文摘要

机器听觉感知中的一个重要问题是识别和检测声音事件。在本文中,我们提出了一种对学习声音的顺序自学方法。我们的主要主张是,在不利的情况下,例如从弱标记和/或嘈杂的标记数据中学习声音更加困难,在这些情况下,单个学习阶段是不够的。我们的建议是一个顺序的阶段学习过程,可提高给定建模系统的概括能力。我们通过技术结果证明了这种方法,并且在Audioset(最大的声音事件数据集)上,我们的顺序学习方法可导致性能提高9%。全面的评估还表明,该方法可提高知识从以前训练的模型中的可传递性,从而提高了转移学习任务的概括能力。

An important problem in machine auditory perception is to recognize and detect sound events. In this paper, we propose a sequential self-teaching approach to learning sounds. Our main proposition is that it is harder to learn sounds in adverse situations such as from weakly labeled and/or noisy labeled data, and in these situations a single stage of learning is not sufficient. Our proposal is a sequential stage-wise learning process that improves generalization capabilities of a given modeling system. We justify this method via technical results and on Audioset, the largest sound events dataset, our sequential learning approach can lead to up to 9% improvement in performance. A comprehensive evaluation also shows that the method leads to improved transferability of knowledge from previously trained models, thereby leading to improved generalization capabilities on transfer learning tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源