论文标题
从变形的弦/量规二元模型的波动和耗散
Fluctuation and Dissipation from a Deformed String/Gauge Duality Model
论文作者
论文摘要
使用洛伦兹在有限温度下的洛伦兹不变变形的弦/量规二元模型,我们计算热波动和相应的线性响应,验证波动降低定理。变形的广告$ _5 $是由指数因子$ \ exp(k/r^2)$构建的。我们还计算弦弦能量和均方根位移,以研究弹道和扩散状态。此外,我们还研究了零温度方案中的耗散和线性响应。
Using a Lorentz invariant deformed string/gauge duality model at finite temperature we calculate the thermal fluctuation and the corresponding linear response, verifying the fluctuation-dissipation theorem. The deformed AdS$_5$ is constructed by the insertion of an exponential factor $\exp(k/r^2)$ in the metric. We also compute the string energy and the mean square displacement in order to investigate the ballistic and diffusive regimes. Furthermore we have studied the dissipation and the linear response in the zero temperature scenario.