论文标题

对加权的鳍片歧管和$ε$ range的比较定理

Comparison theorems on weighted Finsler manifolds and spacetimes with $ε$-range

论文作者

Lu, Yufeng, Minguzzi, Ettore, Ohta, Shin-ichi

论文摘要

我们为加权鳍片歧管和加权的Finsler SpaceTime,建立了加权的RICCI曲率的加权曲线曲线,并建立了加权的Finsler歧管和加权的Finsler SpaceTime,以下是通过使用权重功能来建立加权的Finsler歧管以及加权的Finsler SpaceTime,以及加权的Finsler SpaceTime,建立了帽子的理由定理和主教 - 格罗莫夫体积比较定理。这些比较定理由我们上一篇论文中引入的$ε$ range配制,该论文提供了自然的观点,即具有不同有效维度的加权RICCI曲率条件。我们的一些结果即使是加权的riemannian歧管,并概括了Wylie-Yeroshkin和Kuwae-Li的比较定理。

We establish the Bonnet-Myers theorem, Laplacian comparison theorem, and Bishop-Gromov volume comparison theorem for weighted Finsler manifolds as well as weighted Finsler spacetimes, of weighted Ricci curvature bounded below by using the weight function. These comparison theorems are formulated with $ε$-range introduced in our previous paper, that provides a natural viewpoint of interpolating weighted Ricci curvature conditions of different effective dimensions. Some of our results are new even for weighted Riemannian manifolds and generalize comparison theorems of Wylie-Yeroshkin and Kuwae-Li.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源