论文标题
使用测量运输的非均匀泊松过程强度建模和估计
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport
论文作者
论文摘要
从环境科学到健康科学,都将非均匀的泊松过程用于广泛的科学学科。通常,关注过程中感兴趣的中心对象是基本强度函数。在这里,我们提出了使用测量传输的非均匀泊松过程强度函数的一般模型。该模型是由灵活的射击映射构建的,该绘制从感兴趣的潜在强度函数到更简单的参考强度函数。我们通过将地图建模为多个简单的徒图的组成来强制执行徒,并表明该模型表现出重要的近似特性。柔性映射的估计是在优化框架内完成的,其中使用深度学习和图形处理单元中的技术进步有效地进行了计算。尽管我们发现使用我们的方法获得的强度函数估计不一定优于使用常规方法获得的强度函数,但建模表示为其带来了其他优点,例如促进点过程模拟和不确定性定量。使用我们的方法还促进了更高维度的建模点过程。我们说明了模型在模拟数据上的使用,以及自1964年以来斐济附近地震事件的位置的真实数据集。
Non-homogeneous Poisson processes are used in a wide range of scientific disciplines, ranging from the environmental sciences to the health sciences. Often, the central object of interest in a point process is the underlying intensity function. Here, we present a general model for the intensity function of a non-homogeneous Poisson process using measure transport. The model is built from a flexible bijective mapping that maps from the underlying intensity function of interest to a simpler reference intensity function. We enforce bijectivity by modeling the map as a composition of multiple simple bijective maps, and show that the model exhibits an important approximation property. Estimation of the flexible mapping is accomplished within an optimization framework, wherein computations are efficiently done using recent technological advances in deep learning and a graphics processing unit. Although we find that intensity function estimates obtained with our method are not necessarily superior to those obtained using conventional methods, the modeling representation brings with it other advantages such as facilitated point process simulation and uncertainty quantification. Modeling point processes in higher dimensions is also facilitated using our approach. We illustrate the use of our model on both simulated data, and a real data set containing the locations of seismic events near Fiji since 1964.