论文标题

超高峰幅度的流氓波:一种可达到背景水平千倍的机制

Rogue waves of Ultra-High Peak Amplitude: A Mechanism for Reaching up to Thousand Times the Background Level

论文作者

Sun, Wen-Rong, Liu, Lei, Kevrekidis, P. G.

论文摘要

我们揭露了一种机制,该机制使基本的流氓波以第四级的理性功能表示,以达到峰值的峰值幅度高达千倍的背景水平,这是耦合的非线性schr odinger方程组的峰值幅度,涉及涉及不连贯和相干耦合术语的峰值。我们使用darboux穿压改转换获得了确切的显式矢量有理解决方案。我们表明,这种耦合方程的两个组件都可以达到极高的幅度。该机制在直接的数值模拟中得到了证实,并且在嘈杂的扰动中证实了其鲁棒性。此外,我们展示了一个事实,即即使在混乱的背景场中,也可以激发极高的峰值峰值矢量基本的流氓波(约为背景水平的80倍)。

We unveil a mechanism enabling a fundamental rogue wave, expressed by a rational function of fourth degree, to reach a peak amplitude as high as a thousand times the background level in a system of coupled nonlinear Schrodinger equations involving both incoherent and coherent coupling terms with suitable coefficients. We obtain the exact explicit vector rational solutions using a Darboux-dressing transformation. We show that both components of such coupled equations can reach extremely high amplitudes. The mechanism is confirmed in direct numerical simulations and its robustness confirmed upon noisy perturbations. Additionally, we showcase the fact that extremely high peak-amplitude vector fundamental rogue waves (of about 80 times the background level) can be excited even within a chaotic background field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源