论文标题
组成数据的独立组件分析
Independent Component Analysis for Compositional Data
论文作者
论文摘要
组成数据代表一个特定的多元数据家族,其中感兴趣的信息包含在零件之间的比率中,而不是单个部分的绝对值。这种特定数据的分析是具有挑战性的,因为标准多元分析工具在原始观察中的应用可能会导致虚假结果。因此,在进一步分析之前应用某些转换是适当的。一种流行的多元数据分析工具是独立组件分析。独立的组件分析旨在在数据中找到统计独立的组件,因此可能被视为对主成分分析的扩展。在本文中,我们研究了一种方法,即通过尊重前者的性质对组成数据应用独立的组件分析,并证明了该过程对代谢组数据集的有用性。
Compositional data represent a specific family of multivariate data, where the information of interest is contained in the ratios between parts rather than in absolute values of single parts. The analysis of such specific data is challenging as the application of standard multivariate analysis tools on the raw observations can lead to spurious results. Hence, it is appropriate to apply certain transformations prior further analysis. One popular multivariate data analysis tool is independent component analysis. Independent component analysis aims to find statistically independent components in the data and as such might be seen as an extension to principal component analysis. In this paper we examine an approach of how to apply independent component analysis on compositional data by respecting the nature of the former and demonstrate the usefulness of this procedure on a metabolomic data set.