论文标题

具有流体运动的可集成系统中的Euler级动力相关性

Euler-scale dynamical correlations in integrable systems with fluid motion

论文作者

Møller, Frederik S., Perfetto, Gabriele, Doyon, Benjamin, Schmiedmayer, Jörg

论文摘要

我们设计了一种迭代方案,用于在欧拉级缩放限制中在可集成的多体系统中计算动力学两点相关函数。这些表达式最初是在参考文献中得出的。 [1]通过将波动隔离原理与广义流体动力学相结合。至关重要的是,当运动发生在流体动力学的欧拉级时,该方案能够解决非平稳的,不均匀的情况。在这种情况下,在相互作用的系统中,由于流体传播的流体模式引起的简单相关性接收了我们测试的微妙校正。使用我们的方案,我们研究了来自不均匀初始状态的几个可集成模型中相关性的传播。对于经典的硬杆模型,我们将结果与蒙特 - 卡洛模拟进行了比较,并在长期尺度上观察到了良好的一致性,从而为参考文献中得出的表达式提供了首次有效性。 [1]。我们还观察到动态相关性的Euler尺度极限的开始。

We devise an iterative scheme for numerically calculating dynamical two-point correlation functions in integrable many-body systems, in the Eulerian scaling limit. Expressions for these were originally derived in Ref. [1] by combining the fluctuation-dissipation principle with generalized hydrodynamics. Crucially, the scheme is able to address non-stationary, inhomogeneous situations, when motion occurs at the Euler-scale of hydrodynamics. In such situations, in interacting systems, the simple correlations due to fluid modes propagating with the flow receive subtle corrections, which we test. Using our scheme, we study the spreading of correlations in several integrable models from inhomogeneous initial states. For the classical hard-rod model we compare our results with Monte-Carlo simulations and observe excellent agreement at long time-scales, thus providing the first demonstration of validity for the expressions derived in Ref. [1]. We also observe the onset of the Euler-scale limit for the dynamical correlations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源