论文标题
HACT-NET:用于组织病理学图像分类的分层细胞到组织图神经网络
HACT-Net: A Hierarchical Cell-to-Tissue Graph Neural Network for Histopathological Image Classification
论文作者
论文摘要
癌症诊断,预后和治疗反应预测受组织病理结构与组织功能之间的关系的很大影响。确认结构功能关系的最新方法已通过细胞环中细胞组织的结构和空间模式与肿瘤等级联系起来。尽管细胞组织是势在必行的,但不足以完全代表组织病理学结构。我们提出了一种新型的分层细胞对组织 - 毛电(HACT)表示,以改善组织的结构描述。它由一个低级细胞手法,捕获细胞形态和相互作用,高级组织仪,捕获组织部分的形态和空间分布以及细胞到组织层次结构,编码细胞相对于组织分布的相对空间分布。此外,提出了分层图神经网络(HACT-NET),以有效地将HACT表示为组织病理学乳腺癌的亚型。我们评估了H \&e染色的乳腺癌全滑动的大量注释的组织区域的方法。经过评估,该方法的表现优于乳腺癌多类亚型的最新卷积神经网络和图形神经网络方法。提出的基于实体的拓扑分析与组织的病理诊断程序更加内联。它提供了对组织建模的更多指挥,因此鼓励将病理先验进一步纳入特定于任务的组织表示。
Cancer diagnosis, prognosis, and therapeutic response prediction are heavily influenced by the relationship between the histopathological structures and the function of the tissue. Recent approaches acknowledging the structure-function relationship, have linked the structural and spatial patterns of cell organization in tissue via cell-graphs to tumor grades. Though cell organization is imperative, it is insufficient to entirely represent the histopathological structure. We propose a novel hierarchical cell-to-tissue-graph (HACT) representation to improve the structural depiction of the tissue. It consists of a low-level cell-graph, capturing cell morphology and interactions, a high-level tissue-graph, capturing morphology and spatial distribution of tissue parts, and cells-to-tissue hierarchies, encoding the relative spatial distribution of the cells with respect to the tissue distribution. Further, a hierarchical graph neural network (HACT-Net) is proposed to efficiently map the HACT representations to histopathological breast cancer subtypes. We assess the methodology on a large set of annotated tissue regions of interest from H\&E stained breast carcinoma whole-slides. Upon evaluation, the proposed method outperformed recent convolutional neural network and graph neural network approaches for breast cancer multi-class subtyping. The proposed entity-based topological analysis is more inline with the pathological diagnostic procedure of the tissue. It provides more command over the tissue modelling, therefore encourages the further inclusion of pathological priors into task-specific tissue representation.