论文标题

端到端JPEG解码和伪影使用异质残留卷积神经网络抑制

End-to-End JPEG Decoding and Artifacts Suppression Using Heterogeneous Residual Convolutional Neural Network

论文作者

Niu, Jun

论文摘要

现有的深度学习模型将JPEG伪像将抑制与解码协议的抑制作用为独立任务。在这项工作中,我们向前迈出了一步,设计了一种具有光谱分解和异质重建机制的真实端到端的残余卷积神经网络(HR-CNN)。从完整的CNN体​​系结构和GPU加速中受益,提出的模型大大提高了重建效率。数值实验表明,总体重建速度达到了标准CPU JPEG解码方案的相同大小,而解码和伪影抑制均已完成。我们将JPEG伪像抑制任务制定为解码和图像细节重建的交互过程。提出了一种异质的,完全卷积的机制,以特别解决不同光谱通道的不相关性质。直接从K空间中的JPEG代码开始,网络首先通过通道提取光谱样品,并以扩展的吞吐量恢复光谱快照。然后将这些中间快照异质解码并合并到像素空间图像中。级联的残留学习段旨在进一步增强图像细节。实验验证该模型在JPEG伪像抑制中实现了出色的性能,而与此主题的其他深度学习模型相比,其完整的卷积操作和优雅的网络结构为实用的在线使用效率提供了更高的计算效率。

Existing deep learning models separate JPEG artifacts suppression from the decoding protocol as independent task. In this work, we take one step forward to design a true end-to-end heterogeneous residual convolutional neural network (HR-CNN) with spectrum decomposition and heterogeneous reconstruction mechanism. Benefitting from the full CNN architecture and GPU acceleration, the proposed model considerably improves the reconstruction efficiency. Numerical experiments show that the overall reconstruction speed reaches to the same magnitude of the standard CPU JPEG decoding protocol, while both decoding and artifacts suppression are completed together. We formulate the JPEG artifacts suppression task as an interactive process of decoding and image detail reconstructions. A heterogeneous, fully convolutional, mechanism is proposed to particularly address the uncorrelated nature of different spectral channels. Directly starting from the JPEG code in k-space, the network first extracts the spectral samples channel by channel, and restores the spectral snapshots with expanded throughput. These intermediate snapshots are then heterogeneously decoded and merged into the pixel space image. A cascaded residual learning segment is designed to further enhance the image details. Experiments verify that the model achieves outstanding performance in JPEG artifacts suppression, while its full convolutional operations and elegant network structure offers higher computational efficiency for practical online usage compared with other deep learning models on this topic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源