论文标题

使用幂律互动实现快速无限的量子粉丝门

Implementing a Fast Unbounded Quantum Fanout Gate Using Power-Law Interactions

论文作者

Guo, Andrew Y., Deshpande, Abhinav, Chu, Su-Kuan, Eldredge, Zachary, Bienias, Przemyslaw, Devulapalli, Dhruv, Su, Yuan, Childs, Andrew M., Gorshkov, Alexey V.

论文摘要

用于量子计算的标准电路模型假定在任意量子位之间直接执行门的能力,这对于大规模实验不可能实用。在距离$ r $中,与强度衰减的强度衰减相互作用为$ 1/r^α$提供了一个实验可实现的信息处理资源,同时仍保留长期连接。我们利用这些交互的功能来实现具有任意数量目标的快速量子风扇门。我们的实现允许量子傅里叶变换(QFT)和Shor的算法在与$α\ le d $交互的量子数中进行$ d $维的晶格进行对数的量子对数。作为推论,我们表明,在标准假设下,即使在经典上是棘手的,即使在短时间内,具有$α\ le d $的幂律系统也很难在经典上进行模拟。补充,我们开发了一种新技术,以在系统限制的系统中实现QFT和扇形门所需的时间,在系统的大小上给出一般的下限,线性。这使我们能够证明远距离系统的渐近下限比先前可用的技术可能。

The standard circuit model for quantum computation presumes the ability to directly perform gates between arbitrary pairs of qubits, which is unlikely to be practical for large-scale experiments. Power-law interactions with strength decaying as $1/r^α$ in the distance $r$ provide an experimentally realizable resource for information processing, whilst still retaining long-range connectivity. We leverage the power of these interactions to implement a fast quantum fanout gate with an arbitrary number of targets. Our implementation allows the quantum Fourier transform (QFT) and Shor's algorithm to be performed on a $D$-dimensional lattice in time logarithmic in the number of qubits for interactions with $α\le D$. As a corollary, we show that power-law systems with $α\le D$ are difficult to simulate classically even for short times, under a standard assumption that factoring is classically intractable. Complementarily, we develop a new technique to give a general lower bound, linear in the size of the system, on the time required to implement the QFT and the fanout gate in systems that are constrained by a linear light cone. This allows us to prove an asymptotically tighter lower bound for long-range systems than is possible with previously available techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源