论文标题
M51的磁化磁盘转换区域
The magnetized disk-halo transition region of M51
论文作者
论文摘要
大型设计面对面的螺旋星系M51是研究星系中磁场的绝佳实验室。我们使用VLA在S波段(2-4GHz)的频率范围内介绍了M51的新观察结果,从而为磁盘和光晕之间的过渡区域提供了新的光。我们介绍了总强度,极化强度,极化程度和旋转度量(RM)的分布图像。 S波段中的RM分布显示出波动的模式,没有任何明显的大规模结构。我们讨论了在多层磁极介质中同步辐射的去极化的模型,并将模型预测与1-8GHz之间M51的极化数据进行比较。由于模型预测在S波段的波长范围内有很大差异,因此新数据至关重要。调整模型的参数以适合一些选定区域中极化分数的数据。在三个螺旋臂区域中,磁盘中的湍流场以18mug和24mug之间的优势占主导地位,而固定场的强度为8-16mug。在一个臂间区域,18mug的固定场强度超过了11mug的湍流场的强度。光环中的常规场强度为3-5mug。如帕克不稳定性或银河风的数值模拟所预测的那样,从不断发展的发电机和/或垂直场的模型预测,观察到的RMS可能由纠结的常规场和/或垂直场的模型所预测,可能由纠结的常规场主导。两种类型的磁场在类似于或大于梁尺寸(550pc)的尺度上频繁逆转,这有助于增加RM分散液和固定场任何大规模模式的扭曲。我们的研究设计了分析和解释宽带多频极化数据的新方法,这些数据将适用于例如平方公里阵列的未来数据。
The grand-design face-on spiral galaxy M51 is an excellent laboratory for studying magnetic fields in galaxies. We present new observations of M51 using the VLA at the frequency range of S-band (2-4GHz), to shed new light on the transition region between the disk and halo. We present images of the distributions of the total intensity, polarized intensity, degree of polarization, and rotation measure (RM). The RM distribution in S-band shows a fluctuating pattern without any apparent large-scale structure. We discuss a model of the depolarization of synchrotron radiation in a multi-layer magneto-ionic medium and compare the model predictions to the polarization data of M51 between 1-8GHz. Since the model predictions strongly differ within the wavelength range of the S-band, the new data are essential. The parameters of the model are adjusted to fit to the data of polarization fractions in a few selected regions. In three spiral arm regions, the turbulent field in the disk dominates with strengths between 18muG and 24muG, while the regular field strengths are 8-16muG. In one inter-arm region, the regular field strength of 18muG exceeds that of the turbulent field of 11muG. The regular field strengths in the halo are 3-5muG. The observed RMs in the disk-halo transition region are probably dominated by tangled regular fields, as predicted from models of evolving dynamos, and/or vertical fields, as predicted from numerical simulations of Parker instabilities or galactic winds. Both types of magnetic fields have frequent reversals on scales similar to or larger than the beam size (550pc) that contribute to an increase of the RM dispersion and to distortions of any large-scale pattern of the regular field. Our study devises new ways of analyzing and interpreting broadband multi-frequency polarization data that will be applicable to future data from, for example, the Square Kilometre Array.