论文标题
在多机器人任务中实现多任务机器人
Achieving Multi-Tasking Robots in Multi-Robot Tasks
论文作者
论文摘要
在分布式机器人系统中做出的一个简化的假设是,机器人是单任务:每个机器人随时都在单个任务上运行。尽管这样一种乐观的假设是在具有足够资源的情况下进行的,以便机器人可以独立运作,但是当他们必须共享能力时,它变得不切实际。在本文中,我们考虑使用多机器人任务的多任务机器人。鉴于一组任务,每个机器人都可以实现的任务,我们的方法使联盟可以通过推理可以协同实现任务协同满足的物理约束来重叠和任务协同作用。这项工作的关键贡献是一个通用且灵活的框架,可以在资源约束情况下以扩展其功能的多机器人系统来实现此能力。提出的方法建立在信息不变理论上,该理论指定了信息需求之间的相互作用。在我们的工作中,我们将物理约束映射到信息需求,从而允许通过信息不变框架确定任务协同作用。我们证明,在具有多任务机器人的问题设置下,我们的算法是合理的,完整的。仿真结果表明,在资源受限的情况下以及处理多动物模拟器中的具有挑战性的情况下,其有效性。
One simplifying assumption made in distributed robot systems is that the robots are single-tasking: each robot operates on a single task at any time. While such a sanguine assumption is innocent to make in situations with sufficient resources so that the robots can operate independently, it becomes impractical when they must share their capabilities. In this paper, we consider multi-tasking robots with multi-robot tasks. Given a set of tasks, each achievable by a coalition of robots, our approach allows the coalitions to overlap and task synergies to be exploited by reasoning about the physical constraints that can be synergistically satisfied for achieving the tasks. The key contribution of this work is a general and flexible framework to achieve this ability for multi-robot systems in resource-constrained situations to extend their capabilities. The proposed approach is built on the information invariant theory, which specifies the interactions between information requirements. In our work, we map physical constraints to information requirements, thereby allowing task synergies to be identified via the information invariant framework. We show that our algorithm is sound and complete under a problem setting with multi-tasking robots. Simulation results show its effectiveness under resource-constrained situations and in handling challenging situations in a multi-UAV simulator.