论文标题

Linestacker:用于干涉数据的光谱线堆叠工具

LineStacker: A spectral line stacking tool for interferometric data

论文作者

Jolly, Jean-Baptiste, Knudsen, Kirsten K., Stanley, Flora

论文摘要

Linestacker是一种新的开放式访问和开源工具,用于在干涉数据中堆叠光谱线路。 Linestacker是CASA任务的合奏,可以堆叠3D立方体或已经提取的光谱。该算法对日益复杂的模拟数据集进行了测试,模仿Atacama大毫米/亚毫米阵列和Karl G. Jansky,非常大的[CII]和CO(3-2)发射线的大型阵列观测,分别从$ Z \ SIM7 $和$ Z \ SIM4 $ GALALY。我们发现该算法非常强大,在所有情况下都成功地检索了堆叠线的输入参数,其精度为$ \ gtrsim90 $ \%。但是,我们区分了一些特定情况,展示了该方法的固有局限性。由于线堆叠在移动的中心频率上,因此主要的红移($ΔZ> 0.01 $)上的高不确定性会导致信号与噪声比的差。此外,我们对Linestacker中包含的嵌入式统计工具进行了广泛的描述:主要是引导,重新序列和亚采样。在堆叠之前的数据上,速度重新系列{研究线轮廓时有必要,以避免堆栈中的人工光谱特征。亚采样可用于对堆叠源进行排序,从而可以找到最大化搜索参数的子样本,而引导程序允许检测堆叠样本中的不均匀性。 Linestacker是从各种类型的光谱观测值中提取最大的有用工具。

LineStacker is a new open access and open source tool for stacking of spectral lines in interferometric data. LineStacker is an ensemble of CASA tasks, and can stack both 3D cubes or already extracted spectra. The algorithm is tested on increasingly complex simulated data sets, mimicking Atacama Large Millimeter/submillimeter Array and Karl G. Jansky Very Large Array observations of [CII] and CO(3-2) emission lines, from $z\sim7$ and $z\sim4$ galaxies respectively. We find that the algorithm is very robust, successfully retrieving the input parameters of the stacked lines in all cases with an accuracy $\gtrsim90$\%. However, we distinguish some specific situations showcasing the intrinsic limitations of the method. Mainly that high uncertainties on the redshifts ($Δz > 0.01$) can lead to poor signal to noise ratio improvement, due to lines being stacked on shifted central frequencies. Additionally we give an extensive description of the embedded statistical tools included in LineStacker: mainly bootstrapping, rebinning and subsampling. Velocity rebinning {is applied on the data before stacking and} proves necessary when studying line profiles, in order to avoid artificial spectral features in the stack. Subsampling is useful to sort the stacked sources, allowing to find a subsample maximizing the searched parameters, while bootstrapping allows to detect inhomogeneities in the stacked sample. LineStacker is a useful tool for extracting the most from spectral observations of various types.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源