论文标题

BUSTR:预测实时流量的公共汽车旅行时间

BusTr: Predicting Bus Travel Times from Real-Time Traffic

论文作者

Barnes, Richard, Buthpitiya, Senaka, Cook, James, Fabrikant, Alex, Tomkins, Andrew, Xu, Fangzhou

论文摘要

我们提出了Bustr,这是一种机器学习的模型,用于将道路交通预测转换为公交延迟的预测,Google Maps使用了为世界上大多数公共交通系统提供服务,在该系统中没有提供官方的实时巴士跟踪。我们证明,我们的神经序列模型在性能(MAPE)和训练稳定性方面都改进了DeepTTE,最先进的基线。我们还表现出对简单模型的显着概括,并在纵向数据上进行了评估,以应对不断发展的世界。

We present BusTr, a machine-learned model for translating road traffic forecasts into predictions of bus delays, used by Google Maps to serve the majority of the world's public transit systems where no official real-time bus tracking is provided. We demonstrate that our neural sequence model improves over DeepTTE, the state-of-the-art baseline, both in performance (-30% MAPE) and training stability. We also demonstrate significant generalization gains over simpler models, evaluated on longitudinal data to cope with a constantly evolving world.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源