论文标题

相对于原始元素,代数数的最小程度

Minimal Degrees of Algebraic Numbers with respect to Primitive Elements

论文作者

Park, Cheol-Min, Park, Sun Woo

论文摘要

给定一个数字字段$ l $,我们根据选择$ l $的原始元素来定义l $中代数数$ v \的度。我们提出了计算$ L $中代数数字最小程度的问题,并以$ 4 $ galois扩展名的$ \ Mathbb {q} $和Triquadratic数字字段来检查这些值。我们表明,计算三级数字字段中非理性元素的最低程度与解决经典的二只问题(例如一致数字问题)密切相关,并了解椭圆曲线的各种算术特性。

Given a number field $L$, we define the degree of an algebraic number $v \in L$ with respect to a choice of a primitive element of $L$. We propose the question of computing the minimal degrees of algebraic numbers in $L$, and examine these values in degree $4$ Galois extensions over $\mathbb{Q}$ and triquadratic number fields. We show that computing minimal degrees of non-rational elements in triquadratic number fields is closely related to solving classical Diophantine problems such as congruent number problem as well as understanding various arithmetic properties of elliptic curves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源