论文标题

高光谱图像denoing用部分正交矩阵矢量张量分解

Hyperspectral Image Denoising with Partially Orthogonal Matrix Vector Tensor Factorization

论文作者

Long, Zhen, Liu, Yipeng, Zeng, Sixing, Liu, Jiani, Wen, Fei, Zhu, Ce

论文摘要

由于额外的光谱信息,高光谱图像(HSI)比自然图像具有一些优势。在收购过程中,通常会受到严重的噪音,包括高斯噪音,冲动噪音,截止日期和条纹。图像质量变性会严重影响某些应用。在本文中,我们提出了一种名为“光滑且强大的低级张量恢复”的HSI恢复方法。具体而言,我们根据HSI的线性光谱混合物模型提出了结构张量分解。它将张量分解为外部基质矢量产物的总和,由于末端谱的独立性,矢量是正交的。基于它,全球低等级张量结构可以很好地实现HSI DeNoising。另外,3D各向异性总变化用于HSI的空间光谱分段平滑度。同时,L1规范正规化检测到了稀疏的噪声,包括冲动噪声,截止日期和条纹。在某些现实世界中,Frobenius Norm用于沉重的高斯噪音。采用了乘数的交替方向方法来解决提出的优化模型,该模型同时利用了HSI的全球低等级属性和空间光谱平滑度。对模拟数据和实际数据的数值实验都说明了与现有方法相比,所提出的方法的优越性。

Hyperspectral image (HSI) has some advantages over natural image for various applications due to the extra spectral information. During the acquisition, it is often contaminated by severe noises including Gaussian noise, impulse noise, deadlines, and stripes. The image quality degeneration would badly effect some applications. In this paper, we present a HSI restoration method named smooth and robust low rank tensor recovery. Specifically, we propose a structural tensor decomposition in accordance with the linear spectral mixture model of HSI. It decomposes a tensor into sums of outer matrix vector products, where the vectors are orthogonal due to the independence of endmember spectrums. Based on it, the global low rank tensor structure can be well exposited for HSI denoising. In addition, the 3D anisotropic total variation is used for spatial spectral piecewise smoothness of HSI. Meanwhile, the sparse noise including impulse noise, deadlines and stripes, is detected by the l1 norm regularization. The Frobenius norm is used for the heavy Gaussian noise in some real world scenarios. The alternating direction method of multipliers is adopted to solve the proposed optimization model, which simultaneously exploits the global low rank property and the spatial spectral smoothness of the HSI. Numerical experiments on both simulated and real data illustrate the superiority of the proposed method in comparison with the existing ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源