论文标题

分析流行病学关联的新措施:大麻使用障碍的例子

A new measure for the analysis of epidemiological associations: Cannabis use disorder examples

论文作者

Vsevolozhskaya, Olga A., Alcover, Karl C., Anthony, James C., Zaykin, Dmitri V.

论文摘要

对基于人群的调查的分析有助于研究预防和治疗精神和药物使用障碍。基于人群的数据提供了公共卫生多种决定因素的描述性特征,通常可作为年度数据发布可供研究人员使用。为了提供全国估计的趋势或更新现有的趋势,通常使用ORS作为效应大小的元分析方法。但是,如果估计的OR随着时间的推移表现出不同的模式,则可能需要对OR的某些标准化。我们提出了一种新的效果大小的归一化度量,并为各自的测试统计量提供了渐近分布。归一化常数基于标准化日志的最大范围(OR),为此我们建立了与Laplace限制常数的连接。此外,我们建议以新颖的方式采用标准化对数(或)来获得准确的后验推断。通过模拟研究,我们表明我们的新统计量比传统的统计数据更强大,以测试假设或= 1。然后,我们将其应用于新事件大麻使用者的副作用问题经验(SEPE)共发生的美国人口估计,这是根据《全国药物使用与健康调查》(NSDUH),2004-2014。

Analyses of population-based surveys are instrumental to research on prevention and treatment of mental and substance use disorders. Population-based data provides descriptive characteristics of multiple determinants of public health and are typically available to researchers as an annual data release. To provide trends in national estimates or to update the existing ones, a meta-analytical approach to year-by-year data is typically employed with ORs as effect sizes. However, if the estimated ORs exhibit different patterns over time, some normalization of ORs may be warranted. We propose a new normalized measure of effect size and derive an asymptotic distribution for the respective test statistic. The normalization constant is based on the maximum range of the standardized log(OR), for which we establish a connection to the Laplace Limit Constant. Furthermore, we propose to employ standardized log(OR) in a novel way to obtain accurate posterior inference. Through simulation studies, we show that our new statistic is more powerful than the traditional one for testing the hypothesis OR=1. We then applied it to the United States population estimates of co-occurrence of side effect problem-experiences (SEPE) among newly incident cannabis users, based on the the National Survey on Drug Use and Health (NSDUH), 2004-2014.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源