论文标题
具有牛顿排斥和超线性流动性的非本地互动模型的涡流形成
Vortex formation for a non-local interaction model with Newtonian repulsion and superlinear mobility
论文作者
论文摘要
我们考虑$ u_t = \ nabla \ cdot(γ(u)\ nabla \ mathrm n(u))$的梯度流程方程的密度解决方案,其中$ \ mathrm n $在整个太空中是牛顿的排斥潜力。我们表明,与线性移动案例$γ(u)= u $一样,与紧凑型初始数据相对应的解决方案仍然紧凑,导致移动自由边界。对于线性迁移率,证明有一个特殊的解决方案,形式是空间中恒定强度的磁盘涡流的形式,$ u = c_1t^{ - 1} $在球中支撑的,该球在及时传播的球中,如$ c_2t^{1/d/d} $,从而显示出不连续的前锋前线或震惊。我们目前的结果与形式$γ(u)= u^α$的凹入式动机形成鲜明对比,[9]中研究了$ 0 <α<1 $。在那里,我们开发了一种稳定的粘度解决方案理论,这些理论无处不在,而且在无穷大处显示出脂肪的尾巴。在这里,我们还开发了粘度解决方案的体系良好的理论,在径向案例中,我们非常详细地分析,使我们能够显示出等待时间现象。这是非线性退化扩散方程(例如多孔介质方程)的典型行为。我们还将构建表现出类似涡流行为的显式自相似解决方案,这些溶液表征了某些假设下的一般径向溶液的长期渐近液。提出了基于粘度解决方案理论的收敛数值方案,以分析其收敛速度。我们通过数值模拟对分析结果进行补充,从而使验证的结果并展示了一些开放问题。
We consider density solutions for gradient flow equations of the form $u_t = \nabla \cdot ( γ(u) \nabla \mathrm N(u))$, where $\mathrm N$ is the Newtonian repulsive potential in the whole space $\mathbb R^d$ with the nonlinear convex mobility $γ(u)=u^α$, and $α>1$. We show that solutions corresponding to compactly supported initial data remain compactly supported for all times leading to moving free boundaries as in the linear mobility case $γ(u)=u$. For linear mobility it was shown that there is a special solution in the form of a disk vortex of constant intensity in space $u=c_1t^{-1}$ supported in a ball that spreads in time like $c_2t^{1/d}$, thus showing a discontinuous leading front or shock. Our present results are in sharp contrast with the case of concave mobilities of the form $γ(u)=u^α$, with $0<α<1$ studied in [9]. There, we developed a well-posedness theory of viscosity solutions that are positive everywhere and moreover display a fat tail at infinity. Here, we also develop a well-posedness theory of viscosity solutions that in the radial case leads to a very detail analysis allowing us to show a waiting time phenomena. This is a typical behavior for nonlinear degenerate diffusion equations such as the porous medium equation. We will also construct explicit self-similar solutions exhibiting similar vortex-like behaviour characterizing the long time asymptotics of general radial solutions under certain assumptions. Convergent numerical schemes based on the viscosity solution theory are proposed analysing their rate of convergence. We complement our analytical results with numerical simulations ilustrating the proven results and showcasing some open problems.