论文标题

Schrödinger操作员的薄光谱

Schrödinger Operators with Thin Spectra

论文作者

Damanik, David, Fillman, Jake

论文摘要

Schrödinger操作员光谱的确定是数学量子力学中的一个基本问题。我们讨论了一系列结果,表明Schrödinger运营商可以表现出在Lebesgue度量和分形维度的意义上非常薄的光谱。我们首先对周期理论的结果进行了简要讨论,然后进行讨论,对具有薄光谱的多个模型。

The determination of the spectrum of a Schrödinger operator is a fundamental problem in mathematical quantum mechanics. We discuss a series of results showing that Schrödinger operators can exhibit spectra that are remarkably thin in the sense of Lebesgue measure and fractal dimensions. We begin with a brief discussion of results in the periodic theory, and then move to a discussion of aperiodic models with thin spectra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源