论文标题
Deep-Powerx:低功率近似逻辑合成的基于深度学习的框架
Deep-PowerX: A Deep Learning-Based Framework for Low-Power Approximate Logic Synthesis
论文作者
论文摘要
本文旨在将三种强大的技术(即深入学习,近似计算和低功率设计)整合为在合成级别优化逻辑的策略中。我们利用进步来指导近似逻辑合成引擎,以最大程度地减少给定数字CMOS电路的动态功耗,但要在主要输出处的预定错误率。我们的框架Deep-PowerX着重于在技术映射网络上更换或删除门,并使用深神经网络(DNN)预测网络名单的特定部分近似于电路的主要输出的错误率。 Deep-Power的主要目标是降低动态功率,而降低面积为次要目标。使用上述DNN,Deep-Powerx能够降低标准近似逻辑合成与线性时间的指数时间复杂性。实验是在许多开源基准电路上进行的。结果显示,与精确的解决方案相比,与最先进的近似逻辑合成工具相比,与精确解决方案相比,功率和面积的显着降低了1.47倍和1.43倍,高达22%和27%。
This paper aims at integrating three powerful techniques namely Deep Learning, Approximate Computing, and Low Power Design into a strategy to optimize logic at the synthesis level. We utilize advances in deep learning to guide an approximate logic synthesis engine to minimize the dynamic power consumption of a given digital CMOS circuit, subject to a predetermined error rate at the primary outputs. Our framework, Deep-PowerX, focuses on replacing or removing gates on a technology-mapped network and uses a Deep Neural Network (DNN) to predict error rates at primary outputs of the circuit when a specific part of the netlist is approximated. The primary goal of Deep-PowerX is to reduce the dynamic power whereas area reduction serves as a secondary objective. Using the said DNN, Deep-PowerX is able to reduce the exponential time complexity of standard approximate logic synthesis to linear time. Experiments are done on numerous open source benchmark circuits. Results show significant reduction in power and area by up to 1.47 times and 1.43 times compared to exact solutions and by up to 22% and 27% compared to state-of-the-art approximate logic synthesis tools while having orders of magnitudes lower run-time.