论文标题

广义KDV方程的非分散溶液通常是多solitons

Non dispersive solutions of the generalized KdV equations are typically multi-solitons

论文作者

Friederich, Xavier

论文摘要

我们考虑了广义的Korteweg-de Vries方程(GKDV)的解决方案,这些方程在某种意义上是不分散的(本着[18]的精神),并且仍然接近多索群。我们表明这些解决方案必然是纯粹的多智能子。特别是对于Korteweg-de Vries方程(KDV)和修改的Korteweg-De Vries方程(MKDV),我们从非分散方面获得了多solitons和多ing子的表征。

We consider solutions of the generalized Korteweg-de Vries equations (gKdV) which are non dispersive in some sense (in the spirit of [18]) and which remain close to multi-solitons. We show that these solutions are necessarily pure multi-solitons. For the Korteweg-de Vries equation (KdV) and the modified Korteweg-de Vries equation (mKdV) in particular, we obtain a characterization of multi-solitons and multi-breathers in terms of non-dispersion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源