论文标题
快速计算用于准圆柱形几何形状的电磁波传播和散射
Fast Computation of Electromagnetic Wave Propagation and Scattering for Quasi-cylindrical Geometry
论文作者
论文摘要
已经引入了通过FFT(TI-FFT)算法的圆柱泰勒插值来计算准分子几何形状中近场和远场。向量电势的模态扩展系数$ {\ bf f} $和$ {\ bf a} $在圆柱谐波(TE和TM模式)的上下文中可以通过圆柱添加的添加定理在封闭形式的表达中表达。对于准圆柱形几何形状,可以在泰勒插值(TI)技术的帮助下通过FFT评估模态扩展系数。任何任意圆柱表面上的近场可以通过反傅立叶变换(IFT)获得。远场可以通过近场远场(NF-FF)变换获得。圆柱ti-fft算法具有$ \ MATHCAL {o} \ left(\ hbox {n} \ log_2 \ log_2 \ hbox {n} \ right)$计算复杂性,用于$ \ hbox {n} (大抽样间距),没有奇异性问题。
The cylindrical Taylor Interpolation through FFT (TI-FFT) algorithm for computation of the near-field and far-field in the quasi-cylindrical geometry has been introduced. The modal expansion coefficient of the vector potentials ${\bf F}$ and ${\bf A}$ within the context of the cylindrical harmonics (TE and TM modes) can be expressed in the closed-form expression through the cylindrical addition theorem. For the quasi-cylindrical geometry, the modal expansion coefficient can be evaluated through FFT with the help of the Taylor Interpolation (TI) technique. The near-field on any arbitrary cylindrical surface can be obtained through the Inverse Fourier Transform (IFT). The far-field can be obtained through the Near-Field Far-Field (NF-FF) transform. The cylindrical TI-FFT algorithm has the advantages of $\mathcal{O} \left( \hbox{N} \log_2 \hbox{N} \right)$ computational complexity for $\hbox{N} = \hbox{N}_ϕ\times \hbox{N}_z$ computational grid, small sampling rate (large sampling spacing) and no singularity problem.