论文标题
用于二进制优化问题的Qubit效率编码方案
Qubit-efficient encoding schemes for binary optimisation problems
论文作者
论文摘要
我们提出和分析了一组差异量子算法,用于解决二次无约束的二进制优化问题,其中可以在$ \ MATHCAL O(\ log n_c)$ qubits的数量上实现由$ n_c $ classical变量组成的问题。基本的编码方案允许通过逐渐增加所涉及的量子数来捕获的经典变量之间的相关性系统增加。我们首先检查了所有相关性被忽略的最简单限制,即量子状态只能描述统计上独立的经典变量。我们应用了此最小编码,以查找由64个经典变量使用7个QUBITS组成的一般问题实例的近似解决方案。接下来,我们展示如何将经典变量之间的两体相关性纳入变异量子状态,以及如何改善近似解决方案的质量。我们通过仅使用8个QUAT来解决问题的特定拓扑结构,通过解决42变量的最大切割问题来举例说明。我们分析是否可以在最先进的量子平台中可用的有限资源进行有效的资源进行分析。最后,我们提出了将概率分布的表达性扩展到任何多体相关性的一般框架。
We propose and analyze a set of variational quantum algorithms for solving quadratic unconstrained binary optimization problems where a problem consisting of $n_c$ classical variables can be implemented on $\mathcal O(\log n_c)$ number of qubits. The underlying encoding scheme allows for a systematic increase in correlations among the classical variables captured by a variational quantum state by progressively increasing the number of qubits involved. We first examine the simplest limit where all correlations are neglected, i.e. when the quantum state can only describe statistically independent classical variables. We apply this minimal encoding to find approximate solutions of a general problem instance comprised of 64 classical variables using 7 qubits. Next, we show how two-body correlations between the classical variables can be incorporated in the variational quantum state and how it can improve the quality of the approximate solutions. We give an example by solving a 42-variable Max-Cut problem using only 8 qubits where we exploit the specific topology of the problem. We analyze whether these cases can be optimized efficiently given the limited resources available in state-of-the-art quantum platforms. Lastly, we present the general framework for extending the expressibility of the probability distribution to any multi-body correlations.