论文标题
Schottky团体的折纸描述
Description of Origamis by Schottky groups
论文作者
论文摘要
令$(s,η)$为折纸对,也就是说,$ s $是一个封闭的riemann $ g \ geq1 $和$η:s \ to e $的封闭式表面,是一个全体形状的分支覆盖物,最多有一个分支值,其中$ e $是一个属属。由于Schottky Groups提供了$ S $的最低均匀化,因此我们有兴趣用虚拟Schottky组来描述折纸对。换句话说,我们对那些包含有限索引子组的kleinian $ k $感兴趣,schottky off $γ$,因此$ s =ω/γ$,并且$η$由包含$γ\ leq k $引起。我们说$ k $是一个折纸schottky集团。我们提供了这些折纸sclotschottky群体的klein-baskit组合定理的几何结构图片。
Let $(S,η)$ be an origami pair, that is, $S$ is a closed Riemann surface of genus $g \geq1$ and $η:S \to E$ is a holomorphic branched covering, with at most one branch value, where $E$ is a genus one Riemann surface. As the lowest uniformizations of $S$ are provided by Schottky groups, we are interested in describing origami pairs in terms of virtual Schottky groups. In other words, we are interested in those Kleinian groups $K$ which contain, as a finite index subgroup, a Schottky group $Γ$ such that $S=Ω/Γ$ and such that $η$ is induced by the inclusion $Γ\leq K$. We say that $K$ is an origami-Schottky group. We provide a geometrical structural picture, in terms of the Klein-Maskit combination theorems, of these origami-Schottky groups.