论文标题
非依赖主义开放式弦乐和阳米尔斯理论
Nonrelativistic Open String and Yang-Mills Theory
论文作者
论文摘要
构建了任意非同性主义开放和封闭的弦背景中描述非同性主义开放式弦理论的经典和量子世界表理论。我们表明,在平坦时空中n偶联的D-溴之内结束的开放字符串的低能动力学由伽利亚不变的U(n)Yang-Mills理论描述。我们还研究了具有缠绕数量的非同性开放式琴弦激发,并证明它们的动力学可以在一个更高的维度中编码为局部仪表理论。通过要求边界耦合的保形不变性,控制一致的开放式弦背景的非线性运动方程与任意封闭背景结合(用弦牛顿 - 卡丹几何形状,kalb-ramond和dilaton场描述)被得出,并显示为从镀异的diraciant dirac-dirac-inforn-infeld类型动作中出现。
The classical and quantum worldsheet theory describing nonrelativistic open string theory in an arbitrary nonrelativistic open and closed string background is constructed. We show that the low energy dynamics of open strings ending on n coincident D-branes in flat spacetime is described by a Galilean invariant U(n) Yang-Mills theory. We also study nonrelativistic open string excitations with winding number and demonstrate that their dynamics can be encoded into a local gauge theory in one higher dimension. By demanding conformal invariance of the boundary couplings, the nonlinear equations of motion that govern the consistent open string backgrounds coupled to an arbitrary closed background (described by a string Newton-Cartan geometry, Kalb-Ramond, and dilaton field) are derived and shown to emerge from a Galilean invariant Dirac-Born-Infeld type action.