论文标题

从图像中无监督对拉格朗日动态的学习以进行预测和控制

Unsupervised Learning of Lagrangian Dynamics from Images for Prediction and Control

论文作者

Zhong, Yaofeng Desmond, Leonard, Naomi Ehrich

论文摘要

用神经网络对物理系统的动力学建模的最新方法强制执行拉格朗日式或哈密顿结构,以改善预测和泛化。但是,当将坐标嵌入高维数据(例如图像)中时,这些方法要么丧失解释性,要么只能应用于一个特定示例。我们介绍了一种新的无监督神经网络模型,该模型从图像中学习拉格朗日动态,并具有受益于预测和控制的可解释性。该模型侵入了与坐标感知的变分自动编码器(VAE)同时学习的广义坐标上的拉格朗日动力学。 VAE旨在解释由平面中多个刚体组成的物理系统的几何形状。通过推断可解释的拉格朗日动力学,该模型学习了物理系统属性,例如动能和势能,从而可以长期预测图像空间中的动态和基于能量控制器的合成。

Recent approaches for modelling dynamics of physical systems with neural networks enforce Lagrangian or Hamiltonian structure to improve prediction and generalization. However, when coordinates are embedded in high-dimensional data such as images, these approaches either lose interpretability or can only be applied to one particular example. We introduce a new unsupervised neural network model that learns Lagrangian dynamics from images, with interpretability that benefits prediction and control. The model infers Lagrangian dynamics on generalized coordinates that are simultaneously learned with a coordinate-aware variational autoencoder (VAE). The VAE is designed to account for the geometry of physical systems composed of multiple rigid bodies in the plane. By inferring interpretable Lagrangian dynamics, the model learns physical system properties, such as kinetic and potential energy, which enables long-term prediction of dynamics in the image space and synthesis of energy-based controllers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源