论文标题

关于使用高阶张量来建模肌肉协同作用

On the use of higher-order tensors to model muscle synergies

论文作者

Ebied, Ahmed, Spyrou, Loukianos, Kinney-Lang, Eli, Escudero, Javier

论文摘要

肌肉协同概念提供了了解运动控制的最佳框架,并且最近在许多应用程序(例如假体控制)中使用了它。当前的肌肉协同模型依赖于将多通道表面肌电图(EMG)信号分解为协同基质(空间模式)及其加权函数(时间模式)。这是使用多种矩阵分解技术完成的,非阴性矩阵分解(NMF)是最突出的方法。在这里,我们介绍了一个四阶张量肌肉协同模型,该模型通过考虑光谱信息和重复(运动)来扩展当前的艺术状态。这为模型增加了更多的深度,并提供了更多协同信息。特别是,我们说明了一项概念验证研究,其中Tucker3张量分解模型被应用于Ninapro数据库的腕部运动子集。结果表明,Tucker3张量分解在发现肌肉协同效应的模式中的潜力,以及有关运动的信息,并突出了当前模型和所提出的模型之间的差异。

The muscle synergy concept provides the best framework to understand motor control and it has been recently utilised in many applications such as prosthesis control. The current muscle synergy model relies on decomposing multi-channel surface Electromyography (EMG) signals into a synergy matrix (spatial mode) and its weighting function (temporal mode). This is done using several matrix factorisation techniques, with Non-negative matrix factorisation (NMF) being the most prominent method. Here, we introduce a 4th-order tensor muscle synergy model that extends the current state of the art by taking spectral information and repetitions (movements) into account. This adds more depth to the model and provides more synergistic information. In particular, we illustrate a proof-of-concept study where the Tucker3 tensor decomposition model was applied to a subset of wrist movements from the Ninapro database. The results showed the potential of Tucker3 tensor factorisation in finding patterns of muscle synergies with information about the movements and highlights the differences between the current and proposed model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源