论文标题

在深度学习中,流形光滑度和对抗性脆弱性与本地错误之间的关系

Relationship between manifold smoothness and adversarial vulnerability in deep learning with local errors

论文作者

Jiang, Zijian, Zhou, Jianwen, Huang, Haiping

论文摘要

人工神经网络可以取得令人印象深刻的表现,甚至在某些特定任务中都表现出色。然而,与生物学大脑不同,在各种对抗性攻击下,人工神经网络在感觉输入中遭受了微小的扰动。因此,有必要研究对抗性脆弱性的起源。在这里,我们建立了隐藏表示形式的几何形状(多种透视图)与深网的概括能力之间的基本关系。为此,我们选择了一个深层神经网络,该网络通过局部错误训练,然后通过多种维度,流畅度和概括能力来分析训练有素网络的新兴特性。为了探索对抗性示例的影响,我们考虑了独立的高斯噪声攻击和快速级别 - 符号方法(FGSM)攻击。我们的研究表明,高概括精度需要隐藏表示形式的特征谱的相对快速的幂律衰减。在高斯攻击下,概括精度与幂律指数之间的关系是单调的,而对于FGSM攻击,观察到非单调行为。我们的实证研究为对抗性攻击下的对抗脆弱性的最终机械解释提供了一条途径。

Artificial neural networks can achieve impressive performances, and even outperform humans in some specific tasks. Nevertheless, unlike biological brains, the artificial neural networks suffer from tiny perturbations in sensory input, under various kinds of adversarial attacks. It is therefore necessary to study the origin of the adversarial vulnerability. Here, we establish a fundamental relationship between geometry of hidden representations (manifold perspective) and the generalization capability of the deep networks. For this purpose, we choose a deep neural network trained by local errors, and then analyze emergent properties of trained networks through the manifold dimensionality, manifold smoothness, and the generalization capability. To explore effects of adversarial examples, we consider independent Gaussian noise attacks and fast-gradient-sign-method (FGSM) attacks. Our study reveals that a high generalization accuracy requires a relatively fast power-law decay of the eigen-spectrum of hidden representations. Under Gaussian attacks, the relationship between generalization accuracy and power-law exponent is monotonic, while a non-monotonic behavior is observed for FGSM attacks. Our empirical study provides a route towards a final mechanistic interpretation of adversarial vulnerability under adversarial attacks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源