论文标题
带有复杂几何形状和合成量规场的量子模拟在被困的离子链中
Quantum simulations with complex geometries and synthetic gauge fields in a trapped ion chain
论文作者
论文摘要
近年来,线性RF陷阱中的原子离子阵列已被证明是一个特别成功的量子模拟平台。然而,到目前为止,各种量子模型和现象仍然超出了此类模拟器的范围。在这项工作中,我们介绍了一种技术,该技术可以使用沿离子链和全球统一驾驶场的外部场梯度实质上扩展此覆盖范围。该技术可用于在线性捕获离子的线性链中同时生成静态和时变的合成规场,并可以连续模拟各种耦合的几何形状和拓扑结构,包括定期边界条件和高维汉密尔顿。我们描述了该技术,得出相应的有效哈密顿量,提出了许多变化,并讨论了将缩放量表缩放到量子优势大小的模拟器的可能性。此外,我们建议一些可能的实现,并简要检查两个:Aharonov-Bohm环和沮丧的三角梯。
In recent years, arrays of atomic ions in a linear RF trap have proven to be a particularly successful platform for quantum simulation. However, a wide range of quantum models and phenomena have, so far, remained beyond the reach of such simulators. In this work we introduce a technique that can substantially extend this reach using an external field gradient along the ion chain and a global, uniform driving field. The technique can be used to generate both static and time-varying synthetic gauge fields in a linear chain of trapped ions, and enables continuous simulation of a variety of coupling geometries and topologies, including periodic boundary conditions and high dimensional Hamiltonians. We describe the technique, derive the corresponding effective Hamiltonian, propose a number of variations, and discuss the possibility of scaling to quantum-advantage sized simulators. Additionally, we suggest several possible implementations and briefly examine two: the Aharonov-Bohm ring and the frustrated triangular ladder.