论文标题
关于矢量独立性的普遍一致且完全无分配的等级测试
On universally consistent and fully distribution-free rank tests of vector independence
论文作者
论文摘要
在过去十年中,等级相关性发现了许多创新应用。特别是,合适的等级相关已用于在随机变量对之间进行独立性的一致测试。随着测试无分配,使用等级对于连续数据特别有吸引力。但是,传统的等级概念依赖于订购数据,因此与单变量观察有关。结果,长期以来一直尚不清楚如何构建随机向量之间的独立性的无分布但一致的测试。这是本文中解决的问题,在该问题中,我们制定了设计依赖性度量的一般框架,该措施为多元独立性的测试提供了不仅是一致且无分配的测试,而且还证明这是统计上有效的。我们的框架利用了最近引入的中心排名和标志的概念,是传统等级的多元概括,并采用了包含许多流行示例的依赖度量的常见标准形式。在一项统一的研究中,我们得出了独立下基于中心等级的测试统计数据的一般渐近表示,并扩展到多元设置经典的Hájek渐近表示结果。该表示允许直接计算限制零分布,并促进了局部功率分析,该分析通过首次建立对根部$ n $ nekool in of Quadratic Mean Mean Mean Mean Menable newers中的基于中心级别的测试的非平凡功率,从而为中心外向方法提供了强有力的支持。
Rank correlations have found many innovative applications in the last decade. In particular, suitable rank correlations have been used for consistent tests of independence between pairs of random variables. Using ranks is especially appealing for continuous data as tests become distribution-free. However, the traditional concept of ranks relies on ordering data and is, thus, tied to univariate observations. As a result, it has long remained unclear how one may construct distribution-free yet consistent tests of independence between random vectors. This is the problem addressed in this paper, in which we lay out a general framework for designing dependence measures that give tests of multivariate independence that are not only consistent and distribution-free but which we also prove to be statistically efficient. Our framework leverages the recently introduced concept of center-outward ranks and signs, a multivariate generalization of traditional ranks, and adopts a common standard form for dependence measures that encompasses many popular examples. In a unified study, we derive a general asymptotic representation of center-outward rank-based test statistics under independence, extending to the multivariate setting the classical Hájek asymptotic representation results. This representation permits direct calculation of limiting null distributions and facilitates a local power analysis that provides strong support for the center-outward approach by establishing, for the first time, the nontrivial power of center-outward rank-based tests over root-$n$ neighborhoods within the class of quadratic mean differentiable alternatives.