论文标题

延迟坐标图,相干性和进化运算符的近似光谱

Delay-coordinate maps, coherence, and approximate spectra of evolution operators

论文作者

Giannakis, Dimitrios

论文摘要

使用内核积分操作员技术研究了数据驱动的数据驱动识别的识别量值的相干性可观察到的问题。提出了一种方法,从而,由基于延迟坐标映射的数据构建的积分运算符的配对本征函数构建了具有近似周期性行为的复杂值可观察到的方法。结果表明,这些可观察的物品是系统的Koopman Evolution Operator的$ε$ - 额定功能,其绑定的$ε$由延迟装置窗口的长度,演变时间和适当的光谱差距参数控制。特别是,只要嵌入窗口增加,只要相应的特征值在积分运算符的光谱中足够隔离,就可以任意地将$ε$变为小。还表明,此类可观察物的时间自动相关函数是$ε$ - 浓度的Koopman特征值,表现出明确定义的特征振荡频率(使用Koopman生成器估算)和一个缓慢的模拟信封。结果适用于任意光谱特征的测量,千古动力学系统,包括与连续光谱的混合系统和$ l^2 $中的非恒定koopman eigenfunctions。数值示例揭示了Lorenz 63系统的连贯性,其自相关函数在大约10个Lyapunov时尺度上的模量保持在0.5以上。

The problem of data-driven identification of coherent observables of measure-preserving, ergodic dynamical systems is studied using kernel integral operator techniques. An approach is proposed whereby complex-valued observables with approximately cyclical behavior are constructed from a pair eigenfunctions of integral operators built from delay-coordinate mapped data. It is shown that these observables are $ε$-approximate eigenfunctions of the Koopman evolution operator of the system, with a bound $ε$ controlled by the length of the delay-embedding window, the evolution time, and appropriate spectral gap parameters. In particular, $ ε$ can be made arbitrarily small as the embedding window increases so long as the corresponding eigenvalues remain sufficiently isolated in the spectrum of the integral operator. It is also shown that the time-autocorrelation functions of such observables are $ε$-approximate Koopman eigenvalue, exhibiting a well-defined characteristic oscillatory frequency (estimated using the Koopman generator) and a slowly-decaying modulating envelope. The results hold for measure-preserving, ergodic dynamical systems of arbitrary spectral character, including mixing systems with continuous spectrum and no non-constant Koopman eigenfunctions in $L^2$. Numerical examples reveal a coherent observable of the Lorenz 63 system whose autocorrelation function remains above 0.5 in modulus over approximately 10 Lyapunov timescales.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源