论文标题
概率多模式轨迹预测,并注意自动驾驶汽车
Probabilistic Multi-modal Trajectory Prediction with Lane Attention for Autonomous Vehicles
论文作者
论文摘要
轨迹预测对于自动驾驶汽车至关重要。计划系统不仅需要了解周围物体的当前状态,而且还需要了解其可能的状态。至于车辆,它们的轨迹受到车道几何形状的显着影响以及如何有效使用车道信息具有积极感兴趣。大多数现有作品都使用栅格图来探索道路信息,这并不能区分不同的车道。在本文中,我们提出了一种新颖的实例意识表示车道表示形式。通过集成车道功能和轨迹特征,提出了一个面向目标的车道注意模块来预测车辆的未来位置。我们表明,所提出的车道表示与车道注意模块可以集成到广泛使用的编码器框架中,以生成各种预测。最重要的是,每个生成的轨迹都与处理不确定性的概率相关联。我们的方法不会崩溃到一种行为模式,并且可以涵盖各种可能性。基准数据集的广泛实验和消融研究证实了我们提出的方法的有效性。值得注意的是,我们提出的方法在2019年Neurips的Argoverse运动预测竞赛中排名第三。
Trajectory prediction is crucial for autonomous vehicles. The planning system not only needs to know the current state of the surrounding objects but also their possible states in the future. As for vehicles, their trajectories are significantly influenced by the lane geometry and how to effectively use the lane information is of active interest. Most of the existing works use rasterized maps to explore road information, which does not distinguish different lanes. In this paper, we propose a novel instance-aware representation for lane representation. By integrating the lane features and trajectory features, a goal-oriented lane attention module is proposed to predict the future locations of the vehicle. We show that the proposed lane representation together with the lane attention module can be integrated into the widely used encoder-decoder framework to generate diverse predictions. Most importantly, each generated trajectory is associated with a probability to handle the uncertainty. Our method does not suffer from collapsing to one behavior modal and can cover diverse possibilities. Extensive experiments and ablation studies on the benchmark datasets corroborate the effectiveness of our proposed method. Notably, our proposed method ranks third place in the Argoverse motion forecasting competition at NeurIPS 2019.