论文标题
使用社交媒体上的混合深度学习模型使用多模式来解释抑郁症检测
Explainable Depression Detection with Multi-Modalities Using a Hybrid Deep Learning Model on Social Media
论文作者
论文摘要
模型可解释性对于通过提供对模型预测的洞察力来使适当的用户信任变得重要。但是,大多数现有的机器学习方法没有为抑郁预测提供解释性,因此它们的预测对人类是晦涩的。在这项工作中,我们通过分层注意网络MDHAN提出了解释性的多模式抑郁症检测,以便在社交媒体上检测抑郁用户并解释模型预测。我们已经考虑了用户帖子以及基于Twitter的多模式功能,具体来说,我们使用在推文级别和Word级别上应用的两个关注机制编码用户帖子,计算每个Tweet和Words的重要性,并从用户时间表(帖子)捕获语义序列。我们的实验表明,MDHAN的表现优于几种流行和强大的基线方法,这证明了将深度学习与多模式特征相结合的有效性。我们还表明,在检测在社交媒体上公开发布消息的用户的抑郁症时,我们的模型有助于提高预测性能。 MDHAN取得了出色的性能,并确保有足够的证据来解释预测。
Model interpretability has become important to engenders appropriate user trust by providing the insight into the model prediction. However, most of the existing machine learning methods provide no interpretability for depression prediction, hence their predictions are obscure to human. In this work, we propose interpretive Multi-Modal Depression Detection with Hierarchical Attention Network MDHAN, for detection depressed users on social media and explain the model prediction. We have considered user posts along with Twitter-based multi-modal features, specifically, we encode user posts using two levels of attention mechanisms applied at the tweet-level and word-level, calculate each tweet and words' importance, and capture semantic sequence features from the user timelines (posts). Our experiments show that MDHAN outperforms several popular and robust baseline methods, demonstrating the effectiveness of combining deep learning with multi-modal features. We also show that our model helps improve predictive performance when detecting depression in users who are posting messages publicly on social media. MDHAN achieves excellent performance and ensures adequate evidence to explain the prediction.