论文标题

自我域调整网络

Self domain adapted network

论文作者

He, Yufan, Carass, Aaron, Zuo, Lianrui, Dewey, Blake E., Prince, Jerry L.

论文摘要

域转移是在临床实践中部署深层网络的主要问题。与其(源)训练数据相比,获得的(目标)图像的(目标)图像的不同,网络性能会显着下降。由于缺乏目标标签数据,大多数工作都集中在无监督的域适应性(UDA)上。当前的UDA方法需要源和目标数据才能训练执行图像翻译(协调)或学习域不变特征的模型。但是,培训每个目标域的模型是耗时且计算上昂贵的,当目标域数据稀缺或由于数据隐私而无法获得源数据时,甚至是不可行的。在本文中,我们提出了一个新型的自我域调整网络(SDA-NET),该网络可以在测试阶段迅速适应单个测试主题,而无需使用额外的数据或训练UDA模型。 SDA-NET由三个部分组成:适配器,任务模型和自动编码器。后两个是在标记的源图像上进行预训练的离线。任务模型执行诸如综合,细分或分类之类的任务,可能会遭受域移位问题的困扰。在测试阶段,对适配器进行了训练,以改变输入测试图像和功能,以减少自动编码器测量的域移位,从而执行域的适应性。我们用不同的MRI扫描仪和不同成像参数从不同的OCT扫描仪和T1合成的视网膜层分割验证了我们的方法。结果表明,我们的SDA-NET具有单个测试主题,并且在测试阶段进行自我适应时间很短,可以实现重大改进。

Domain shift is a major problem for deploying deep networks in clinical practice. Network performance drops significantly with (target) images obtained differently than its (source) training data. Due to a lack of target label data, most work has focused on unsupervised domain adaptation (UDA). Current UDA methods need both source and target data to train models which perform image translation (harmonization) or learn domain-invariant features. However, training a model for each target domain is time consuming and computationally expensive, even infeasible when target domain data are scarce or source data are unavailable due to data privacy. In this paper, we propose a novel self domain adapted network (SDA-Net) that can rapidly adapt itself to a single test subject at the testing stage, without using extra data or training a UDA model. The SDA-Net consists of three parts: adaptors, task model, and auto-encoders. The latter two are pre-trained offline on labeled source images. The task model performs tasks like synthesis, segmentation, or classification, which may suffer from the domain shift problem. At the testing stage, the adaptors are trained to transform the input test image and features to reduce the domain shift as measured by the auto-encoders, and thus perform domain adaptation. We validated our method on retinal layer segmentation from different OCT scanners and T1 to T2 synthesis with T1 from different MRI scanners and with different imaging parameters. Results show that our SDA-Net, with a single test subject and a short amount of time for self adaptation at the testing stage, can achieve significant improvements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源