论文标题

Marstrand-Mattila可重新讨论性标准,以$ 1 $ - 二维措施的carnot组

Marstrand-Mattila rectifiability criterion for $1$-codimensional measures in Carnot Groups

论文作者

Merlo, Andrea

论文摘要

本文专门表明,Carnot组中的$ 1 $编码措施的切线的平坦度暗示$ C^1_ \ Mathbb {G} $ - 可重新可相关性。 As applications we prove that measures with $(2n+1)$-density in the Heisenberg groups $\mathbb{H}^n$ are $C^1_{\mathbb{H}^n}$-rectifiable, providing the first non-Euclidean extension of Preiss's rectifiability theorem and a criterion for intrinsic Lipschitz rectifiability of finite一般Carnot组中的周长组。

This paper is devoted to show that the flatness of tangents of $1$-codimensional measures in Carnot Groups implies $C^1_\mathbb{G}$-rectifiability. As applications we prove that measures with $(2n+1)$-density in the Heisenberg groups $\mathbb{H}^n$ are $C^1_{\mathbb{H}^n}$-rectifiable, providing the first non-Euclidean extension of Preiss's rectifiability theorem and a criterion for intrinsic Lipschitz rectifiability of finite perimeter sets in general Carnot groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源