论文标题

驱动频率对放电参数的影响和在恒定功率密度下电容放电中较高的谐波产生

Driving frequency effect on discharge parameters and higher harmonic generation in capacitive discharges at constant power densities

论文作者

Sharma, Sarveshwar, Sirse, Nishant, Kuley, Animesh, Sen, Abhijit, Turner, Miles M

论文摘要

由于其高处理速率和较低的底物损坏,因此,非常高的频率(VHF)驱动电容放电量越来越多地用于血浆基材料处理。过去与复杂的等离子体动力学和此类系统中较高谐波产生有关的研究仅限于恒定电压/电流状况,而工业系统主要由恒定功率密度来源驱动。在本研究中,使用细胞中的粒子(PIC)模拟,我们探索了以恒定功率密度运行的无碰撞对称电容放电的动力学。我们的重点是驱动频率对排放参数的影响,例如电子密度/温度,电子能量分布函数(EEDF),离子能分布函数(IEDF)以及设备中较高的谐波产生。在氩血浆中的气压为1 pA的27.12-100 MHz的驾驶频率和两个功率密度值的驾驶频率进行模拟,即2 kW/m3和20 kW/m3。据观察,维持恒定功率密度的所需放电电压随着驾驶频率的增加而降低并排放电流增加。在两个功率密度下都观察到过渡频率。在过渡频率之前,密度降低(电子温度升高),并且越过过渡频率后趋势逆转。随着驱动频率的增加到过渡频率,EEDF显示了电子中部电子范围的增强,从而将EEDF的形状从Bi-Maxwellian变为几乎是Maxwellian,然后在较高的驾驶频率下变成几乎Bi-Maxwellian。

Very high frequency (VHF) driven capacitive discharges are now being increasingly adopted for plasma-based materials processing due to their high processing rates and lower substrate damage. Past studies related to complex plasma dynamics and higher harmonics generation in such systems were limited to constant voltage/current conditions, whereas, industrial systems are mostly driven by constant power density sources. In the present study, using particle-in-cell (PIC) simulation, we explore the dynamics of collisionless symmetric capacitive discharges that is operated at constant power densities. Our focus is on the effect of the driving frequency on the discharge parameters like the electron density/temperature, the electron energy distribution function (EEDF), the ion energy distribution function (IEDF), and the generation of higher harmonics in the device. The simulations are performed for a driving frequency from 27.12-100 MHz in argon plasma at a gas pressure of 1 Pa and for two values of the power density, namely, 2 kW/m3 and 20 kW/m3. It is observed that the required discharge voltage for maintaining constant power density decreases and discharge current increases with an increase in the driving frequency. A transition frequency is observed at both power densities. The density decreases (electron temperature increases) before the transition frequency and the trend is reversed after crossing the transition frequency. The EEDF shows an enhancement in the population of the mid-energy range of electrons as the driving frequency increases up to the transition frequency thereby changing the shape of EEDF from bi-Maxwellian to nearly Maxwellian, and then transforms into a nearly bi-Maxwellian at higher driving frequencies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源