论文标题

Weyl加倍

Weyl doubling

论文作者

Alawadhi, Rashid, Berman, David S., Spence, Bill

论文摘要

我们研究了许多空间,其中Weyl曲率可以根据Abelian田间强度表示代数。其中包括在四个和更高维度中的D型空间,遵循Weyl Spinor双复制关系,遵守野外强度与Weyl张量之间的简单二次关系。但是,我们通过将量规场置于弯曲的时空而不是辅助平面空间来与通常的双复制范式不同。 我们展示了如何通过包括在阿贝尔场强度中线性的衍生依赖性表达式来表明,如何使用两个以上的中心的高度介绍Weyl倍加倍公式的概括。在八个维度的旋转(7)单位的歧管的情况下,我们还发现了一种扭曲的加倍公式。 对于在时空定义的独立仪表场的爱因斯坦麦克斯韦理论,我们研究了仪表场如何通过双重公式确定韦尔时空曲率。我们首先表明,在任何维度上,Reissner-Nordstrom指标都会发生这种情况,并且这对电荷出生式式污染解决方案进行了概括。最后,我们考虑了超级实力中的Brane系统,表明适用了类似的加倍公式。该Weyl公式基于P-Form电位的田间强度,该电势将伴侣最小化与Brane和Brane世界体积杀死向量。

We study a host of spacetimes where the Weyl curvature may be expressed algebraically in terms of an Abelian field strength. These include Type D spacetimes in four and higher dimensions which obey a simple quadratic relation between the field strength and the Weyl tensor, following the Weyl spinor double copy relation. However, we diverge from the usual double copy paradigm by taking the gauge fields to be in the curved spacetime as opposed to an auxiliary flat space. We show how for Gibbons-Hawking spacetimes with more than two centres a generalisation of the Weyl doubling formula is needed by including a derivative-dependent expression which is linear in the Abelian field strength. We also find a type of twisted doubling formula in a case of a manifold with Spin(7) holonomy in eight dimensions. For Einstein Maxwell theories where there is an independent gauge field defined on spacetime, we investigate how the gauge fields determine the Weyl spacetime curvature via a doubling formula. We first show that this occurs for the Reissner-Nordstrom metric in any dimension, and that this generalises to the electrically-charged Born-Infeld solutions. Finally, we consider brane systems in supergravity, showing that a similar doubling formula applies. This Weyl formula is based on the field strength of the p-form potential that minimally couples to the brane and the brane world volume Killing vectors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源