论文标题

频谱稳定的Lugiato-Lefever周期性波的线性模量和亚谐波动力学

Linear Modulational and Subharmonic Dynamics of Spectrally Stable Lugiato-Lefever Periodic Waves

论文作者

Haragus, Mariana, Johnson, Mathew A., Perkins, Wesley R.

论文摘要

我们研究了Lugiato-Lefever方程(LLE)的光谱稳定$ t $ t $周期固定溶液的线性动力学,这是一种抑制的非线性Schrödinger方程,并在非线性光学中产生的强迫。这样的$ t $ - 周期解决方案是非线性稳定至$ nt $ - 周期性的,即subharmonic,每个$ n \ in \ mathbb {n} $的扰动,具有$ e^{ - δ_nt} $的扰动的指数衰减率。但是,衰减$δ_n$的指数率和初始扰动的允许大小趋向于$ 0 $ as $ n \ to \ to \ infty $,因此此结果在$ n $中是不均匀的,实际上,在极限$ n = \ infty $中是空的。本文的主要目的是在LLE的背景下引入一种方法,至少在线性级别上可以实现亚谐波扰动的统一稳定性。所获得的均匀衰变速率证明与局部化的多项式衰减速率(即可在实际线路上集成)完全吻合。这项工作既统一,又扩展了有关此类波浪稳定性和动态的文献中的几项现有作品,并阐述了在其他情况下研究此类问题的一般方法。

We study the linear dynamics of spectrally stable $T$-periodic stationary solutions of the Lugiato-Lefever equation (LLE), a damped nonlinear Schrödinger equation with forcing that arises in nonlinear optics. Such $T$-periodic solutions are nonlinearly stable to $NT$-periodic, i.e. subharmonic, perturbations for each $N\in\mathbb{N}$ with exponential decay rates of perturbations of the form $e^{-δ_N t}$. However, both the exponential rates of decay $δ_N$ and the allowable size of the initial perturbations tend to $0$ as $N\to\infty$, so that this result is non-uniform in $N$ and, in fact, empty in the limit $N=\infty$. The primary goal of this paper is to introduce a methodology, in the context of the LLE, by which a uniform stability result for subharmonic perturbations may be achieved, at least at the linear level. The obtained uniform decay rates are shown to agree precisely with the polynomial decay rates of localized, i.e. integrable on the real line, perturbations of such spectrally stable periodic solutions of the LLE. This work both unifies and expands on several existing works in the literature concerning the stability and dynamics of such waves, and sets forth a general methodology for studying such problems in other contexts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源