论文标题

Kuiper皮带种群的机器学习分类

Machine Learning Classification of Kuiper Belt Populations

论文作者

Smullen, Rachel A., Volk, Kathryn

论文摘要

在外部太阳系中,Kuiper带包含由行星形成与迁移以及来自当今巨型行星构型的重力扰动的组合雕刻的动态子人群。观察到的Kuiper带对象(KBO)分为不同动力学类的细分基于它们在轨道的数值整合中的当前轨道演化。在这里,我们证明机器学习算法是减少此分类所需的计算时间和人力努力的有前途的工具。使用梯度提升分类器,一种机器学习回归树分类器,对从短数值模拟的特征进行训练,我们将KBOS分为四个宽,动态不同的种群,具有经典,共振,分离和散射 - 具有> 97%的精度,用于542个可靠地分类的KBOS的测试集。这些对象中有80%以上具有$>3σ$的类成员资格的概率,表明机器学习方法正在根据每个人群的基本动力学特征进行分类。我们还展示了如何通过对传统方法进行计算节省,我们可以通过检查从观察性错误中得出的对象克隆的集合来快速得出类成员资格的分布。我们发现错误分类错误的两个主要原因:对象轨道中的固有歧义 - 例如,在共鸣边缘的对象 - 训练集中缺乏代表性示例。这项工作为探索的途径提供了有希望的途径,以便在未来十年的调查中快速准确地分类数千个新的KBO。

In the outer solar system, the Kuiper Belt contains dynamical sub-populations sculpted by a combination of planet formation and migration and gravitational perturbations from the present-day giant planet configuration. The subdivision of observed Kuiper Belt objects (KBOs) into different dynamical classes is based on their current orbital evolution in numerical integrations of their orbits. Here we demonstrate that machine learning algorithms are a promising tool for reducing both the computational time and human effort required for this classification. Using a Gradient Boosting Classifier, a type of machine learning regression tree classifier trained on features derived from short numerical simulations, we sort observed KBOs into four broad, dynamically distinct populations - classical, resonant, detached, and scattering - with a >97 per cent accuracy for the testing set of 542 securely classified KBOs. Over 80 per cent of these objects have a $>3σ$ probability of class membership, indicating that the machine learning method is classifying based on the fundamental dynamical features of each population. We also demonstrate how, by using computational savings over traditional methods, we can quickly derive a distribution of class membership by examining an ensemble of object clones drawn from the observational errors. We find two major reasons for misclassification: inherent ambiguity in the orbit of the object - for instance, an object that is on the edge of resonance - and a lack of representative examples in the training set. This work provides a promising avenue to explore for fast and accurate classification of the thousands of new KBOs expected to be found by surveys in the coming decade.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源