论文标题
KQA Pro:一个具有明确组成程序的数据集,用于通过知识库回答复杂问题
KQA Pro: A Dataset with Explicit Compositional Programs for Complex Question Answering over Knowledge Base
论文作者
论文摘要
在知识库(复杂KBQA)上回答复杂的问题是具有挑战性的,因为它需要各种组成推理功能,例如多跳推断,属性比较,集合操作。现有的基准有一些缺点,这些缺点限制了复杂的KBQA的发展:1)它们仅提供质量检查对而没有明确的推理过程; 2)问题的多样性或规模很差。为此,我们介绍了KQA Pro,这是一个用于复杂KBQA的数据集,包括〜120k多样化的自然语言问题。我们引入了一种构图和可解释的编程语言KOPL,以代表复杂问题的推理过程。对于每个问题,我们提供相应的KOPL程序和SPARQL查询,以便KQA Pro用于KBQA和语义解析任务。实验结果表明,SOTA KBQA方法无法在当前数据集上实现KQA Pro上有希望的结果,这表明KQA Pro具有挑战性,复杂的KBQA需要进一步的研究工作。我们还将KQA Pro视为测试多种推理技能的诊断数据集,对现有模型进行彻底评估,并讨论复杂KBQA的进一步说明。我们的代码和数据集可从https://github.com/shijx12/kqapro_baselines获得。
Complex question answering over knowledge base (Complex KBQA) is challenging because it requires various compositional reasoning capabilities, such as multi-hop inference, attribute comparison, set operation. Existing benchmarks have some shortcomings that limit the development of Complex KBQA: 1) they only provide QA pairs without explicit reasoning processes; 2) questions are poor in diversity or scale. To this end, we introduce KQA Pro, a dataset for Complex KBQA including ~120K diverse natural language questions. We introduce a compositional and interpretable programming language KoPL to represent the reasoning process of complex questions. For each question, we provide the corresponding KoPL program and SPARQL query, so that KQA Pro serves for both KBQA and semantic parsing tasks. Experimental results show that SOTA KBQA methods cannot achieve promising results on KQA Pro as on current datasets, which suggests that KQA Pro is challenging and Complex KBQA requires further research efforts. We also treat KQA Pro as a diagnostic dataset for testing multiple reasoning skills, conduct a thorough evaluation of existing models and discuss further directions for Complex KBQA. Our codes and datasets can be obtained from https://github.com/shijx12/KQAPro_Baselines.