论文标题
Pathgan:带有细心的生成对抗网络的本地路径规划
PathGAN: Local Path Planning with Attentive Generative Adversarial Networks
论文作者
论文摘要
为了实现没有高清图的自动驾驶,我们提出了一个模型,能够从自动驾驶汽车的自主式图像中产生多个合理的路径。我们的生成模型包括两个神经网络:特征提取网络(FEN)和路径生成网络(PGN)。 FEN从以自我为中心的图像中提取了有意义的特征,而PGN给定驾驶意图和速度产生了从特征的多个路径。为了确保生成的路径是合理的,并且与意图一致,我们引入了一个细心的歧视者,并在生成的对抗网络框架下向PGN训练它。我们还设计了路径中的位置与隐藏在位置中的意图之间的相互作用模型,并设计了一种反映相互作用模型的新型PGN体系结构,从而提高了生成的路径的准确性和多样性。最后,我们介绍了Etridriving,这是一种用于自动驾驶的数据集,其中记录的传感器数据以离散的高级驾驶动作标记,并在准确性和多样性方面展示了拟议模型的最先进性能。
To achieve autonomous driving without high-definition maps, we present a model capable of generating multiple plausible paths from egocentric images for autonomous vehicles. Our generative model comprises two neural networks: the feature extraction network (FEN) and path generation network (PGN). The FEN extracts meaningful features from an egocentric image, whereas the PGN generates multiple paths from the features, given a driving intention and speed. To ensure that the paths generated are plausible and consistent with the intention, we introduce an attentive discriminator and train it with the PGN under generative adversarial networks framework. We also devise an interaction model between the positions in the paths and the intentions hidden in the positions and design a novel PGN architecture that reflects the interaction model, resulting in the improvement of the accuracy and diversity of the generated paths. Finally, we introduce ETRIDriving, a dataset for autonomous driving in which the recorded sensor data are labeled with discrete high-level driving actions, and demonstrate the state-of-the-art performance of the proposed model on ETRIDriving in terms of accuracy and diversity.