论文标题

多分辨率的β-差异NMF用于盲目光谱

Multi-Resolution Beta-Divergence NMF for Blind Spectral Unmixing

论文作者

Leplat, Valentin, Gillis, Nicolas, Févotte, Cédric

论文摘要

许多数据集作为两个对抗性维度之间的解决方案权衡。例如,在音频信号的频谱图的频率和时间分辨率之间,波长的数量与超光/多光谱图像的空间分辨率之间。要使用具有不同分辨率的观测值进行盲目分离,标准方法是使用耦合的非负矩阵因子化(NMF)。以前的大多数作品都集中在最小二乘误差量度上,即$β= 2 $的$β$ divergence。在本文中,我们针对任何$β$ divergence制定了这个多分辨率的NMF问题,并根据乘法更新(MU)提出了算法。我们在数值实验上表明,MU能够在两个应用上的两个维度中获得高分辨率:(1)音频频谱图的盲透未连接:据我们所知,这是在此上下文中首次使用耦合的NMF模型,以及(2)与特定的偏爱和多个MU的融合:我们的融合:MU竞争MU的融合。非高斯噪音。

Many datasets are obtained as a resolution trade-off between two adversarial dimensions; for example between the frequency and the temporal resolutions for the spectrogram of an audio signal, and between the number of wavelengths and the spatial resolution for a hyper/multi-spectral image. To perform blind source separation using observations with different resolutions, a standard approach is to use coupled nonnegative matrix factorizations (NMF). Most previous works have focused on the least squares error measure, which is the $β$-divergence for $β= 2$. In this paper, we formulate this multi-resolution NMF problem for any $β$-divergence, and propose an algorithm based on multiplicative updates (MU). We show on numerical experiments that the MU are able to obtain high resolutions in both dimensions on two applications: (1) blind unmixing of audio spectrograms: to the best of our knowledge, this is the first time a coupled NMF model is used in this context, and (2) the fusion of hyperspectral and multispectral images: we show that the MU compete favorable with state-of-the-art algorithms in particular in the presence of non-Gaussian noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源