论文标题

离散的schrödinger运营商的界限在一个和二维晶格上

Bound states of discrete Schrödinger operators on one and two dimensional lattices

论文作者

Kholmatov, Shokhrukh, Lakaev, Saidakhmat, Almuratov, Firdavs

论文摘要

我们研究离散schrödinger操作员$$ \ widehath_μ= \ widehat h_0 +μ\ widehat {v},\qquadμ\ ge0,$ ge0,$ d $ d $ d $ d $ dattice lattice $ \ mathbb {z z}^d = d = d = d = d = d = d = 1 d = d = d = d = d = d = d = d = d = d = d = d = 1 $ \ hat h_0 $是由$ \ hat e生成的自动化laurent toeplitz-type操作员:在$ \ hat e $上的假设以及对$ \ hat v $的衰减假设,我们确定了$ \ hath_μ的特征值的存在或不存在的存在,也是$ \h_μ。

We study the spectral properties of discrete Schrödinger operator $$ \widehat H_μ=\widehat H_0 + μ\widehat{V},\qquad μ\ge0, $$ associated to a one-particle system in $d$-dimensional lattice $\mathbb{Z}^d, $ $d=1,2,$ where the non-perturbed operator $\hat H_0$ is a self-adjoint Laurent-Toeplitz-type operator generated by $\hat e:\mathbb{Z}^d\to\mathbb{C}$ and the potential $\hat V$ is the multiplication operator by $\hat v:\mathbb{Z}^d\to\mathbb{R}.$ Under certain regularity assumption on $\hat e$ and a decay assumption on $\hat v$, we establish the existence or non-existence and also the finiteness of eigenvalues of $\hat H_μ.$ Moreover, in the case of existence we study the asymptotics of eigenvalues of $\hat H_μ$ as $μ\searrow 0.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源